助力市场营销与服务的数据分析实战
Ian Fu 查看讲师
百林哲咨询(北京)有限公司专家团队成员
曾任华为技术专家,五篇技术专利,工作期间获得华为数项奖项,曾在英国、日本、荷兰等国家做项目,对大数据有深入的研究。
浏览:1189次
详情 DETAILS

课程简介

百货业之父约翰·沃纳梅克(John Wanamaker)曾经说过“我知道在广告上的投资有一半是无用的,但问题是我不知道是哪一半。”而现如今,随着大数据的日益广泛应用,浪费的另一半正在被找到。在互联网、大数据、人工智能的时代中,绝大多数企业都已经知道单纯依靠“烧钱”这种单一的营销方式已经行不通,只有精准化的营销,才能实现企业和消费者之间进行点对点的互动交流。

本课程从实际的业务需求出发,结合行业的典型应用特点,围绕实际的商业问题,对数据分析及数据挖掘技术进行了全面的介绍(从数据收集与处理,到数据分析与挖掘,再到数据可视化和报告撰写),通过大量的操作演练,帮助学员掌握数据分析和数据挖掘的思路、方法、表达、工具,从大量的企业经营数据中进行分析,挖掘客户行为特点,帮助运营团队深入理解业务运作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。

课程收益

1、了解数据分析的本质,理解数据决策的底层逻辑;

2、学会搭建数据分析框架,熟悉常用的业务模型;

3、熟悉数据分析标准过程,能够按步骤进行数据分析;

4、掌握常用数据分析方法,熟练使用Excel高级数据分析工具;

5、掌握常用高级定量预测模型,理解模型原理,学会解读模型含义。

受众人群

销售部、营业厅、市场营销部、运营分析部、业务支撑部等业务及应用人员。

本课程由浅入深,结合原理主讲软件工具应用,不需要太深的数学知识,但希望掌握数据分析的相关人员。

课程周期

1-2天(6-12H)

课程大纲

课程主题

课程内容

第一部分: 数据核心理念—数据思维篇

问题:什么是数据思维?大数据决策的底层逻辑以及决策依据是什么?

1、 数字化五大技术战略:ABCDI战略

Ø A:人工智能,目的是用机器模拟人类行为

Ø B:区块链,构建不可篡改的分布记账系统

Ø C:云计算,搭建按需分配的计算资源平台

Ø D:大数据,实现智能化的判断和决策机制

Ø I:物联网,实现万物互联通信的基础架构

2、 大数据的本质

Ø 数据,是事物发展和变化过程中留下的痕迹

Ø 大数据不在于量大,而在于全(多维性)

Ø 业务导向还是技术导向

3、 大数据决策的底层逻辑(即四大核心价值)

Ø 探索业务规律,按规律来管理决策

案例:客流规律与排班及最佳营销时机

案例:致命交通事故发生的时间规律

Ø 发现运营变化,定短板来运营决策

案例:考核周期导致的员工月初懈怠

案例:工序信号异常监测设备故障

Ø 理清要素关系,找影响因素来决策

案例:情绪对于股市涨跌的影响

案例:为何升职反而会增加离职风险?

Ø 预测未来趋势,通过预判进行决策

案例:惠普预测员工离职风险及挽留

案例:保险公司的车险预测与个性化保费定价

4、 大数据决策的三个关键环节

Ø 业务数据化:将业务问题转化为数据问题

Ø 数据信息化:提取数据中的业务规律信息

Ø 信息策略化:基于规律形成业务应对策略

案例:用数据来识别喜欢赚“差价”的营业员

第二部分: 精准营销分析—分析步骤篇

1、 数据分析的六步曲

2、 步骤1:明确目的,确定分析思路

Ø 确定分析目的:要解决什么样的业务问题

Ø 确定分析思路:分解业务问题,构建分析框架

3、 步骤2:收集数据,寻找分析素材

Ø 明确数据范围

Ø 确定收集来源

Ø 确定收集方法

4、 步骤3:整理数据,确保数据质量

Ø 数据质量评估

Ø 数据清洗、数据处理和变量处理

Ø 探索性分析

5、 步骤4:分析数据,寻找业务答案

Ø 选择合适的分析方法

Ø 构建合适的分析模型

Ø 选择合适的分析工具

6、 步骤5:呈现数,解读业务规律

Ø 选择恰当的图表

Ø 选择合适的可视化工具

Ø 提炼业务含义

7、 步骤6:撰写报告,形成业务策略

Ø 选择报告种类

Ø 完整的报告结构

演练:产品精准营销案例分析

Ø 如何搭建精准营销分析框架

精准营销分析的过程和步骤

第三部分: 用户行为分析—统计方法篇

问题:数据分析方法的种类?分析方法的不同应用景?

1、 业务分析的三个阶段

Ø 现状分析:通过企业运营指标来发现规律及短板

Ø 原因分析:查找数据相关性,探寻目标影响因素

Ø 预测分析:合理配置资源,预判业务未来的趋势

2、 常用的数据分析方法种类

Ø 描述性分析法(对比/分组/结构/趋势/交叉…)

Ø 相关性分析法(相关/方差/卡方…)

Ø 预测性分析法(回归/时序/决策树/神经网络…)

Ø 专题性分析法(聚类/关联/RFM模型/…)

3、 统计分析基础

Ø 统计分析两大关键要素(类别、指标)

Ø 统计分析的操作模式(类别à指标)

Ø 统计分析三个操作步骤(统计、画图、解读)

Ø 透视表的三个组成部分

4、 常用的描述性指标

Ø 集中程度:均值、中位数、众数

Ø 离散程度:极差、方差/标准差、IQR

Ø 分布形态:偏度、峰度

5、 基本分析方法及其适用场景

Ø 对比分析(查看数据差距,发现事物变化)

演练:寻找用户的地域分布特征

演练:分析产品受欢迎情况及贡献大小

演练:用数据来探索增量不增收困境的解决方案

Ø 分布分析(查看数据分布,探索业务层次)

演练:银行用户的消费水平和消费层次分析

演练:客户年龄分布/收入分布分析

案例:通信运营商的流量套餐划分合理性的评估

演练:呼叫中心接听电话效率分析(呼叫中心)

Ø 结构分析(查看指标构成,评估结构合理性)

案例:增值业务收入结构分析(通信)

案例:物流费用成本结构分析(物流)

案例:中移动用户群动态结构分析

演练:财务领域的结构瀑布图、财务收支的变化瀑布图

Ø 趋势分析(发现事物随时间的变化规律)

案例:破解零售店销售规律

案例:手机销量的淡旺季分析

案例:微信用户的活跃时间规律

演练:发现客流量的时间规律

Ø 交叉分析(从多个维度的数据指标分析)

演练:用户性别+地域分布分析

演练:不同客户的产品偏好分析

演练:不同学历用户的套餐偏好分析

演练:银行用户的违约影响因素分析

第四部分: 用户行为分析—分析框架篇

问题:如何才能全面/系统地分析而不遗漏?如何分解和细化业务问题?

1、 业务分析思路和分析框架来源于业务模型

2、 常用的业务模型

Ø 外部环境分析:PEST

Ø 业务专题分析:5W2H

Ø 竞品/竞争分析:SWOT、波特五力

Ø 营销市场专题分析:4P/4C等

3、 精准营销的业务模型(6R准则)

Ø 寻找正确的客户

Ø 匹配正确的产品

Ø 确定合理的价格

Ø 选择恰当的时机

Ø 通过合适的渠道

Ø 传递恰当的信息

案例讨论:如何构建大数据精准营销的分析框架

4、 用户行为分析(5W2H分析思路和框架)

Ø WHY:原因(用户需求、产品亮点、竞品优劣势)

Ø WHAT:产品(产品喜好、产品贡献、产品功能、产品结构)

Ø WHO:客户(基本特征、消费能力、产品偏好)

Ø WHEN:时间(淡旺季、活跃时间、重购周期)

Ø WHERE:区域/渠道(区域喜好、渠道偏好)

Ø HOW:支付/促销(支付方式、促销方式有效性评估等)

Ø HOW MUCH:价格(费用、成本、利润、收入结构、价格偏好等)

案例讨论:结合公司情况,搭建用户消费习惯的分析框架(5W2H)

5、 数据分析策略

第五部分: 影响因素分析—原因分析篇

营销问题:哪些因素是影响业务目标的关键要素?比如,产品在货架上的位置是否对销量有影响?价格和广告开销是如何影响销量的?影响风控的关键因素有哪些?如何判断?

1、 影响因素分析的常见方法

2、 相关分析(衡量两数据型变量的线性相关性)

Ø 相关分析简介

Ø 相关分析的应用场景

Ø 相关分析的种类

² 简单相关分析

² 偏相关分析

² 距离相关分析

Ø 相关系数的三种计算公式

² Pearson相关系数

² Spearman相关系数

² Kendall相关系数

Ø 相关分析的假设检验

Ø 相关分析的四个基本步骤

演练:营销费用会影响销售额吗?影响程度如何量化?

演练:哪些因素与汽车销量有相关性

演练:影响用户消费水平的因素会有哪些

Ø 偏相关分析

² 偏相关原理:排除不可控因素后的两变量的相关性

² 偏相关系数的计算公式

² 偏相关分析的适用场景

Ø 距离相关分析

3、 方差分析(衡量类别变量与数值变量间的相关性)

Ø 方差分析的应用场景

Ø 方差分析的三个种类

² 单因素方差分析

² 多因素方差分析

² 协方差分析

Ø 单因素方差分析的原理

Ø 方差分析的四个步骤

Ø 解读方差分析结果的两个要点

演练:摆放位置与销量有关吗

演练:客户学历对消费水平的影响分析

演练:广告和价格是影响终端销量的关键因素吗

演练:营业员的性别、技能级别对产品销量有影响吗

演练:寻找影响产品销量的关键因素

Ø 多因素方差分析原理

Ø 多因素方差分析的作用

Ø 多因素方差结果的解读

演练:广告形式、地区对销量的影响因素分析

Ø 协方差分析原理

Ø 协方差分析的适用场景

演练:排除产品价格,收入对销量有影响吗?

4、 列联分析/卡方检验(两类别变量的相关性分析)

Ø 交叉表与列联表:计数值与期望值

Ø 卡方检验的原理

Ø 卡方检验的几个计算公式

Ø 列联表分析的适用场景

案例:套餐类型对客户流失的影响分析

案例:学历对业务套餐偏好的影响分析

案例:行业/规模对风控的影响分析

5、 相关性分析方法总结

第六部分: 定量预测模型—回归模型篇

营销问题:如何预测未来的产品销量/销售额?如果产品跟随季节性变动,该如何预测?

1、 回归分析简介和原理

2、 回归分析的种类

Ø 一元回归/多元回归

Ø 线性回归/非线性回归

3、 常用回归分析方法

Ø 散点图+趋势线(一元)

Ø 线性回归工具(多元线性)

Ø 规划求解工具(非线性回归)

演练:散点图找营销费用与销售额的关系

4、 线性回归分析的五个步骤

演练:营销费用、办公费用与销售额的关系(线性回归)

5、 线性回归方程的解读技巧

Ø 定性描述:正相关/负相关

Ø 定量描述:自变量变化导致因变量的变化程度

6、 回归预测模型评估

Ø 质量评估指标:判定系数R^2

Ø 如何选择最佳回归模型

演练:如何选择最佳的回归预测模型(一元曲线回归)

7、 带分类自变量的回归预测

演练:汽车季度销量预测

演练:工龄、性别与终端销量的关系

演练:如何评估销售目标与资源最佳配置

第七部分: 产品销量预测—时序预测篇

1、 时间序列简介

Ø 回归模型的缺点

2、 时序预测常用模型

3、 评估预测值的准确度指标

Ø 平均绝对误差MAD

Ø 均方差MSE/RMSE

Ø 平均误差率MAPE

4、 移动平均(MA)

Ø 应用场景及原理

Ø 移动平均种类

² 一次移动平均

² 二次移动平均

² 加权移动平均

² 移动平均比率法

Ø 移动平均关键问题

² 期数N的最佳选择方法

² 最优权重系数的选取方法

演练:平板电脑销量预测及评估

演练:快销产品季节销量预测及评估

5、 指数平滑(ES)

Ø 应用场景及原理

Ø 最优平滑系数的选取原则

Ø 指数平滑种类

² ²一次指数平滑

² ²二次指数平滑(Brown线性、Holt线性、Holt指数、阻尼线性、阻尼指数)

² ²三次指数平滑

演练:煤炭产量预测

演练:航空旅客量预测及评估

结束:课程总结与问题答疑。


企业服务热线:400-106-2080
电话:18519192882
投诉建议邮箱:venus@bailinzhe.com
合作邮箱:service@bailinzhe.com
总部地址:
北京市-丰台区-汽车博物馆东路6号3号楼1单元902-B73(园区)
全国客户服务中心:
天津市-南开区-桂苑路15号鑫茂集团鑫茂军民园1号楼A座802-803
公众号
百林哲咨询(北京)有限公司 京ICP备2022035414号-1